
Reversible diffusion-limited cluster aggregation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 L263

(http://iopscience.iop.org/0305-4470/19/5/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) L263-L268. Printed in Great Britain 

LElTER TO THE EDITOR 

Reversible diffusion-limited cluster aggregation 
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91405 Orsay, France and Institut fur Theorie des Kondensierten Materie, Freie Universitat, 
Berlin, Arnimallee 14, 1000-Berlin 33, West Germany 

Received 13 November 1985 

Abstract. A model of cluster aggregation with and without loops is introduced where 
clusters can both aggregate and fragment. In the steady state equilibrium, the clusters have 
a fractal dimension D = 1.57i0.06 (2.03i0.05) in two (three) dimensions. The cluster-size 
distribution has scaling Form and.depends on the kinetics. The results are compared with 
irreversible growth and static cluster models. 

The study of irreversible diff usion-controlled aggregation processes (Witten and Sander 
1981, Meakin 1983, Kolb et a1 1983) shows that the kinetics and the irreversibility 
influence the resulting structures in an important way: the fractal properties in aggrega- 
tion phenomena are different from purely configurational models such as lattice animals 
and percolation (Lubensky and Isaacson 1978, Parisi and Sourlas 1981, Glaus 1985, 
Stauffer 1979,1985). The theoretical efforts to characterise such growth processes have 
been hampered by the fact that these processes are far from equilibrium. This motivates 
one to investigate intermediate situations between growth models and purely static 
models: here I consider the case of dynamic equilibrium between growth and frag- 
mentation. 

A second motivation to study reversible aggregation processes is the observation 
that in many experiments the growth is not strictly irreversible. Restructuring in some 
sense needs to be included. Examples where this is important are coagulation and 
fragmentation of polymers (Blatz and Tobolsky 1945, Nanda and Pathria 1959, Hen- 
driks 1985), restructuring of aggregation clusters (Allah and Jouhier 1983, Richetti et 
a1 1985, Meakin and Jullien 1985, Camoin and Blanc 1985), rouleaux formation in 
red cell aggregation (Herbst and Goldstein 1984) and flocculation/floc dissociation in 
colloids (Vincent and Whittington 1982). 

The model proposed here is the reversible counterpart to diffusive clustering of 
clusters. It will be shown that the cluster-size distribution in this process is dependent 
on the kinetics just as in the corresponding growth model, but the geometrical fractal 
properties appear to be those of statics (animals or branched polymers). 

In the irreversible cluster aggregation process one considers an assembly of randomly 
and independently diffusing clusters which stick together by forming rigid permanent 
bonds whenever they touch each other. Large clusters that form this way have 
non-trivial scaling properties. In the reversible cluster aggregation process studied 
here, the bonds form in the same way, but they are allowed to break up again, after 
a characteristic time T. This way a fragmentation process is introduced. The long time 
behaviour is characterised by the dynamic equilibrium between aggregation, charac- 
terised by the time T, and fragmentation characterised by Tf. Starting initially with 
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single particles, aggregation will dominate until the clusters are large enough, such 
that the bonds formed and the bonds broken balance each other ( T ,  = Tf). Conversely, 
if the clusters are initially very large, fragmentation is more important, until the 
equilibrium cluster size is reached. This characteristic size depends of course on T. A 
more quantitative description will be given below. 

The model investigated here numerically, both in two and three dimensions, is a 
lattice version of the above process. On a periodically bounded hypercubic lattice of 
linear dimension L one places No particles at random. No two particles are allowed 
to occupy the same site, but they can be nearest neighbours. Initially, all the particles 
(even nearest neighbours) are independent, i.e. no bonds are yet formed. Then, the 
particles start to perform independent random walks on the lattice (jumping to neigh- 
bouring sites). If a particle attempts to move to an already occupied site, it will not 
be allowed to move; instead, a bond will be placed between the neighbouring particles 
which have just collided. They form a dimer and diffuse together from now on. A 
collision between two clusters will be treated in the same way. If any particle of the 
first cluster attempts to occupy the same site occupied by a particle of the second 
cluster, the first cluster does not move, but a bond forms between the colliding particles, 
thus connecting the clusters. On a lattice, it is possible that several particles collide 
simultaneously, possibly with different clusters. Two alternative procedures have been 
investigated: either one chooses exactly one pair of colliding particles at random and 
forms a single bond between them (this imitates off-lattice simulations, where the 
probability of a multiple collision vanishes), or all possible bonds are formed. The 
first rule leads to loopless clusters; the second rule allows for loops. The results do 
not depend on this choice (most of the data presented come from simulating the 
loopless case). To disaggregate, the bonds are broken randomly and independently 
with a probability l/.r per unit time. For a loopless cluster a broken bond necessarily 
splits a cluster into two smaller clusters, whereas if loops are allowed, a removed bond 
does not necessarily fragment the cluster. In any case, after a break-up the two clusters 
diffuse again independently of each other. 

A qualitative description of the dynamic equilibrium can be given for the situation 
with low cluster concentration and a monodisperse cluster-size distribution. Denote 
by D the fractal dimension of the clusters and by d the Euclidean dimension. The 
diffusing velocity v of a cluster of mass m (single particles have m = 1) is characterised 
by an exponent a in v ( m )  = ma. Then the time it takes the clusters to pair up is 

/ P o  where 61 = No/ N is the average mass per cluster, N the number 
of clusters and po = No/ Ld the initial density (Kolb 1984). For the loopless case the 
time to pair up is the same as the time to form one bond. In a cluster of mass m a 
bond breaks on average in a time Tf = T / m .  Dynamical equilibrium requires that the 
aggregation time is equal to the fragmentation time, T,= Tf, which determines the 
equilibrium cluster size me, as a function of po and T, m2;"-(d-2)/D - - 7p0. The corre- 
sponding characteristic time t,, = T /  me, separates irreversible from reversible steady 
state aggregation; starting initially with single particles, the growth is irreversible for 
t << t,, and crosses over to the dynamic equilibrium, t >> re,. It is this latter case that 
is studied here. Varying T (or po) one can change meq or f i , and a scaling analysis 
can be performed both for the cluster radius and for the size distribution of the clusters, 
as a function of m. 

In figure 1, clusters are shown in two dimensions to illustrate the difference between 
loopless clusters and clusters with loops. In the second case, not all possible bonds 
are present, as some have been removed by the bond-breaking mechanism. 

,jj I - a - ( d  - 2 ) / D  
Pa - 
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Figure 1. Clusters obtained in reversible diffusion-limited cluster aggregation. The 
difference between loopless clusters (left) and clusters with loops (right) is illustrated 
( d  =2).  

In figure 2, the crossover from the growing to the equilibrium regime is shown. 
The average mass m is plotted as a function of time. It is seen to saturate gradually 
at its equilibrium value. rfi has been normalised by meq, t by req. The steady state is 
reached for t z3teq. The curves for a = -2 (monodisperse) show that the crossover is 
practically independent of rii in normalised units. Most simulations were performed 
for a system with L = 100, No = 1000 in two dimensions with L = 30, No = 1000 in three 
dimensions. It was checked that the concentration does not influence the results by 
comparing with a system twice as large. The average number of clusters in equilibrium 
was kept above ten to keep boundary effects negligible; for lii large, L was increased 
at fixed concentration to assure this. Also, in all the simulations, the clusters were not 
rotated. 
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Figure 2. Crossover from growth (irreversible clustering) to equilibrium (reversible cluster- 
ing) aggregation. The average mass m (normalised by meq) is plotted against time r 
(normalised by teq). For comparison, a = -2, meq = 6 (O),  a = -2, meq = 12 ( X )  and a = 0, 
meq = 12 (+) are shown. The data are an average over 100 separate simulations in two 
dimensions. 



L266 Letter to the Editor 

In figure 3, the fractal properties of the clusters have been collected. The radius 
of gyration R against the cluster mass m has been plotted both for the largest cluster 
and for the average over all the clusters, at equilibrium. The points for different values 
of the cluster mobility, a, fall on the same curve (for clusters with and without loops) 
and the average over all clusters is consistent with the largest cluster alone. Bonding 
with loops appears to have the same fractal dimension as bonding without loops. The 
estimated fractal dimension is D = 1.57 * 0.06 and D = 2.03 * 0.05 in d = 2 and d = 3, 
respectively. Comparing with irreversible cluster formation (D = 1.42, 1.78 in d = 2 ,  
3 )  shows a marked difference. The restructuring of the cluster effectively removes the 
screening which keeps the aggregating clusters at a distance in the irreversible process. 
The data presented have been measured at intervals of 2teq in equilibrium. The 
independence of the measurements was monitored by the correlations of R (  t )  and 

Finally, in figure 4, the cluster-size distribution N ( m )  (the number of clusters with 
m particles) is shown. The scaling function p ( x )  is defined through N ( m ) =  
m - ’ P ( m / m )  where here m is the weight-averaged cluster mass. It is plotted for 

R (  t + 2teq). 
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Figure 3. A log-log plot of the radius of gyration R against the mass m. The upper curve 
is for d = 2, the lower for d = 3. Data are shown for n = -2 (0) and a = 0 ( x )  for the 
average over the cluster and for a = -2 (+) for the largest cluster, for loopless clusters. 
Clusters with loops are shown for a = -2 (0) (average). The estimated fractal dimension 
is D = 1.57 * 0.06 (2.03 i0.05) in d = 2 (3). The data are an average over 2000 measurements 
in the steady state regime. 
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Figure4. Reduced cluster-size distribution p ( x )  for d = 2  and loopless clusters. The 
distribution does not depend on meq but on a. For a = -2, meq = 6 (0) and meq = 12 ( x )  
and for a = -1 ,  mcq = 12 (+) are shown. 

different values of meq and a. As in irreversible clustering it does depend on a, but 
the maximum at a finite a value for a = -2 is much broader than in irreversible 
clustering (Kolb 1984). This can be understood from the difference between aggregation 
and fragmentation. The kinetics is important for aggregation (favouring a monodisperse 
distribution), but it does not influence the random break-up (which favours a much 
broader distribution). 

The above simulations indicate that the fractal dimension D does not depend on 
whether one allows loops or not. The steady state also does not depend on the initial 
cluster-size distribution. The role of a is more interesting, since for irreversible 
aggregation, a > 1 corresponds to a different growth process with a different D (Botet 
et al 1984). The present model has been simulated for a = 1 and does not show any 
sign of a different D. One other way to test if the kinetics is at all important is to 
consider the reaction-limited instead of the diffusion-limited case. A sticking probabil- 
ity p = 0.05 has been introduced (a bond between two colliding particles is formed 
with probability p only). The results indicate that, again in contrast with irreversible 
growth (Kolb and Jullien 1985, Jullien and Kolb 1984), D is not affected by p .  

The conclusion from the above calculations is that the steady-state growth is an 
equilibrium model where the details of how clusters aggregate and fragment is unimpor- 
tant. Note that the numerical values for D are, within the error bars, the same as the 
ones for lattice animals. This suggests that, while a particular cluster may have a 
relative weight that depends on the kinetics, the scaling properties are universal. The 
statistical weight of individual configurations need not be the same, analogous to 
branched polymers and lattice animals, which despite different cluster weights belong 
to the same universality class. One practical difference to the simulation methods for 
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static models (Glaus 1985) is that there is no detailed balance here. It is interesting 
to compare the results from diffusive and reactive irreversible growth with the static 
and dynamic equilibrium results. The exponents suggest that all models have the same 
fractal properties, except when the process is both diffusive and irreversible. 

The reversible cluster aggregation model is the equilibrium counterpart to the usual 
clustering process. Its geometrical properties are numerically the same as those of 
lattice animals. One way to change the expected fractal properties would be to choose 
non-random bond breaking. 

I have benefited from stimulating discussions ~ i t h  R Botet and R Jullien. The support 
of the Deutsche Forschungsgemeinschaft is acknowledged. 
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